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Abstract—The traditional row-based query-processing, origi-
nally meant for online transaction processing (OLTP) optimizes
for writing individual rows and fares less well on the read-
intensive, aggregating workloads of today’s online analytical pro-
cessing (OLAP) systems. Column-oriented databases or column-
stores for short, store data by the column. This new kind
of storage scheme serves read-intensive operations better and
enables a collection of optimizations that further speed up
analytical queries.

From a purely storage perspective, it is easy to see the benefits
of storing data in columns. For example, aggregating values in a
column only requires the system to read a single, continuous
column from the disk rather than reading in rows of data,
extracting the requested column values and calculating the result
only after that. Storing data of the same type together is also
useful because compression can be used to shift the load from
I/O to CPU. By operating on columns of similarly typed data,
data-dependent, poorly CPU-predictable machine code can be
avoided and better CPU utilization achieved.

We will compare row- and column-oriented query execution
and go through optimizations that are central to the performance
benefits of column-oriented databases such as vectorized query-
processing and compression.

Index Terms—Query processing, Relational databases

I. INTRODUCTION

The semantic model of a query is the query tree. Query trees
(or query operator trees) consist of query operators which in
the traditional Volcano model [1] describe the practical rela-
tional algebra operations [2] used to answer queries. Examples
of query operators are scan, select, sort, join and projection
and aggregation.

Scan Reads tuples from disk
Select Selects tuples that fulfill a given condition
Sort Sorts tuples according to specified condition
Join Joins sets of tuples to each other
Projection Include specified set of values from tuples
Aggregation Computes aggregate values

TABLE I
SUMMARY OF TYPICAL QUERY OPERATORS

After receiving the query from the user, database system
goes through multiple query plans, ways to execute a query.
A query plan is the semantic model to use for executing a
query. The choice of query tree used for the query plan is
done by comparing the costs of different query trees [3]. Each
of the query operators might have different costs depending
on the order they are used in the plan.

The cost of a query plan is determined by inspecting
the schema of the database and looking at different metrics
collected from it. These metrics can be something very basic,

such as row counts or usable indices, or even something as
complicated as average values for columns [4]. By preferring
indexed columns for tuple selection and by placing select-
operators closer to the leaves of the tree the amount of
processed tuples can be limited and the cost of the query
lowered.

SELECT emp.last_name, emp.first_name, dep.name
FROM employees AS emp, departments AS dep
WHERE emp.created > date ’2012-01-01’

AND dep.id = emp.department_id
ORDER BY emp.created,

Fig. 1. Example query

For example, a query such as described in figure 1 can be
represented by a naive query tree such as depicted in figure 2.

Projection
columns emp.last_name, emp.first_name and dep.name

Select
rows where emp.created > 2012-01-01

Sort
by column emp.created

Join
rows dep.id = emp.department_id

Scan
rows in employees AS emp

Scan
rows in departments AS dep

Fig. 2. Naive query operator tree for example query.

The naive query tree first scans both of the tables, then
joins them and only after that starts dropping tuples from the
execution. It ends up joining the tables at the earliest possible
time which maximizes the join cost. For example, using a
simple join-algorithm such as the nested loop join the time
complexity of the join-operation is O

(
N ∗M

)
. In this case N

would be the tuple count of employees and M the tuple count
of departments.

After the join, tuples are sorted by the created column of
employees. If the column is indexed, this is a fast operation.
If the column isn’t indexed, the operator ends up first sorting
the tuples by the value, doing unnecessary work since some
of the values might be dropped by the next operator in the
tree. Naturally, intelligent enough select operator could use



this known order to it’s advantage and skip the comparison
operation for part of the input tuples because it knows the
input is ordered. By doing the select-operation before sorting
the tuples, the sorting operation has to operate on less tuples.
In general, the most efficient query plans utilize indices at the
lowest possible level and avoid scanning the whole table from
the disk, which is costly due to the I/O operations it causes.
Scanning the whole table from the disk is called a full table
scan.

Given that we have an index on the created column in the
employees table, we can construct a more efficient query plan
as shown in figure 3. The query plan utilizes the index on the
created column and avoids a full table scan of employees. If
the index is also ordered, it can be used by the sort-operator
that is next in line after the select-operator. The join-operator
is then left with only a subset of the employees tuples to join
with the departments.

Projection
columns emp.last_name, emp.first_name and dep.name

Join
rows dep.id = emp.department_id

Sort
by column emp.created

Scan
rows in departments AS dep

Select
rows where emp.created > 2012-01-01

Scan
rows in employees AS emp

Fig. 3. Less naive query operator tree for example query.

The typical query in a column-store is different. Given a
query such as in figure 1 with no aggregation operations yields
less benefits in a column-store. A more typical OLAP query
(modified from an example given by Bonchz et al [2]) is
depicted in figure 4 is quite a different case. It can be realized
into a query operator tree as pictured in figure 5. The tree
consists of a single scan operator, followed by a select that
implements the where-clause. After that aggregate values and
direct projections are combined into a result. The query is
characterized by the many aggregations it includes.

While typical queries for both OLTP and OLAP applications
consist of common components, their usage contexts might
be quite different. A business application is programmed by
expert programmers, database and all its indices are tailor-
made just for the application. An analytical application might
be a massive data warehouse where data is stored for analysis
and it might be used only for queries by people not well-versed
in the intricacies of database systems [5]. Both systems can
still support the logical data model, a common model after
which relational database systems are built on. Logical data
model specifies concepts such as tuples (or rows), columns,

SELECT
returnflag, linestatus,
sum(quantity) AS sum_qty,
sum(extendedprice) AS sum_base_price,
avg(quantity) AS avg_qty,
avg(extendedprice) AS avg_price,
count(*) AS count_order

FROM lineitem
WHERE year = 2000

AND region = ’ASIA’
GROUP BY returnflag, linestatus

Fig. 4. Example analytical query

tables and databases and the operations on these concepts.
Logical data model serves well as the basis for a transac-

tional database. Transactional use is write-heavy and involves
full rows of data. For example, filling a lineorder table is made
up of orders. When an order comes in, it is appended into the
table. A column-store is not as well optimized for this kind
of operation since it has to first destructure the row and then
append the values into their respective columns separately.

Conversely, columnar database can aggregate the values in
a lineorder table quicker since it already stores the values in a
sequential column. This is beneficial also for performance and
storage reasons. Operating on an array of values of same type
can be optimized for modern processors [2] and compression
is easier on values of the same type [5]. Making column-store
fast, however, requires the implementor to take into account
the new requirements posed. Basically, query execution and
query operators need to change as well.

We will first take a view of history on the subject and look
at column-store optimizations in brief in section II. After this
we go through the introduced optimizations in depth in the
following sections. We take a closer look at block iteration and
other general query execution changes in section III, vectorized
processing in section IV and finally go through compression
issues in section V. One can find the conclusions from section
VI.

II. BACKGROUND

Storing database data in columns is nothing new. Systems
such as TAXIR [6] and RAPID [7] date back as far as 1969
and 1976, respectively. Alternative data storage schemes have
also been introduced before [8], but they haven’t been as
successful in attaining traction among the industry. There is a
wealth of research on the workings of databases and especially
on the optimization of the traditional transactional work load.
Research on columnar databases, however, is quite recent and
in the context of data warehousing a relatively new idea [5],
even though the RAPID system was used by Statistics Canada
for statistical calculations way back in the 70s.

Different kind of ways of optimizing row-stores for analyt-
ical work-loads have been introduced.

• Vertical partitioning is based on storing each column in
its own table. Each of these vertical tables consist of the



Projection
columns returnflag, linestatus and Aggregate values

Select
rows where year = 2000 AND region = 'ASIA'

Aggregate
Sum on column quantity

Aggregate
Sum on column extendedprice

Aggregate
Average on column quantity

Aggregate
Average on column extendedprice

Aggregate
Count of rows

Scan
rows in lineitem

Fig. 5. OLAP query operator tree.

actual value column and the row identifier column than
is used to materialize the original row [9].

• Materialized views is another way of optimizing for
analytical queries. Materialized views are views that are
created in anticipation (and mainly used in benchmarks)
of certain types of queries. The purpose of materialized
views is to create views that contain only the relevant
columns needed to answer a given query [9].

• Index-only plans are based on the idea of creating indices
for all needed columns so that the the database system
wouldn’t need to do any table scans during query execu-
tion. [9].

Query processing and query plan optimization in row-stores
naturally relies on the underlying well-defined semantics of the
storage system, highly specialized data catalogs that define the
type and number of data stored in each table and cost-functions
based on relational algebra to come up with comparable values
for query costs [3]. Column-stores use similar measures to
discover how to execute queries. The differences between
row- and column-stores are in the query execution and storage
layers [9], not in the logical data model used.

The central optimizations that make column-stores faster
than row-stores on analytical queries are based on the under-
lying implementation optimizations such as

• vectorized query processing [2], [10], which lets the CPU
operate directly on typed data arrays.

• Block iteration, which is a technique to enable vectorized
query processing by operating on more than one tuple or
column value at a time.

• Column-specific compression techniques are yet another
way to speed up column-stores. [11], [9].

Column-stores optimize away from the previously pervasive
Volcano-like [1] systems that are based on the idea of reading
(scanning) the tuples from disk and treating them as tuples
from early on. This is called early tuple materialization. In
the context of column-stores, the earliest (and most inefficient)
tuple materialization strategy would be to construct tuples
from each of the columns when the values are read from

System / optimization Average query time
C-Store baseline 41 seconds
Late materialization 15 seconds
Compression 8 seconds
Invisible joins 4 seconds

TABLE II
PERFORMANCE BENEFITS OF OPTIMIZATIONS ACCORDING TO ABADI ET

AL [9] ON THE Star-Schema Benchmark

disk. Conversely, late tuple materialization makes it possible
to implement the aforementioned optimizations [9]. Late tuple
materialization is also the driver for the query operator changes
used in column-stores [9].

Each of the optimization techniques presented improves the
performance of a column-store. In the C-Store system [12]
the late materialization changes (see section IV for details)
provides biggest gains while compression and invisible joins
benefit less (see II table for details).

While column-stores try to improve performance by using
vertical data partitioning (columns are vertical structures in
this sense), another option would be to partition the columns
again horizontally to further improve compression possibilities
and enable query processing on metadata collected from these
newly constructed data clusters. In In Infobright’s database
system, these kind of data clusters are called data packs and
they respectively contain rough metrics. Rough metrics of
a data pack, such as min or max value, sum of values or
number of nulls, can be used to help optimize queries or
even answering queries directly[4]. For example, using the
minimum and maximum values for a date field one can decide
whether a given cluster is needed to answer a query or not.

III. QUERY EXECUTION IN COLUMN-STORES

As mentioned earlier, the typical Volcano query processing
model is based on query operators that act as tuple iterators.
A call to an unoptimized scan operator would always trigger
a disk seek. A completely naive implementation of this model
would then end up fetching every tuple from the disk individ-



ually. This kind of overhead is naturally partly mitigated by
paging.

In a column-oriented database, to achieve speed gains in
query processing it is beneficial to access more than a single
tuple at a time to be able to vectorize processing. To achieve
this, systems such as C-Store [12] and MonetDB [10] use a
technique called block iteration. Block iteration at its heart is
just about the iterators returning sets of items instead of single
items.

Block iteration has also been investigated before in row-
stores, mainly motivated by the need to amortize the iterator
call. However, this isn’t necessarily as beneficial for row-stores
since the time saved may not be that significant because the
per-tuple processing costs such as tuple deconstruction are
relatively high [5].

Another query operator optimization that is made obvious in
column-stores is pushing the predicate select operators down
to the scan operator [5]. Going back to our OLAP query
example in figure 4, if the select predicates were pushed to
the scan operator, it could operate directly on the data read
from the disk and possibly leverage optimizations developed
specifically for that kind of comparison. It is also possible to
work directly on compressed data if the predicate is provided
with the compressed representation of the predicate value [11].

Invisible joins are a method for speeding up joins in a
column-store. Invisible joins work by creating bit vectors for
different columns and intersecting those bit-vectors to [9]
provide the indices that are actually part of the resulting tuple.
In our OLAP query example (in figure 4), this can be used for
joining the year and region columns and for constructing the
resulting tables. In other words, invisible joins are a way of
rewriting joins as selection predicates. For one, it reduces the
need to access columns out of order (reduces disk seeks) [9]
and enables them to be pushed onto the scan operator which
can then take advantage of vectorized processing (see section
IV) to achieve performance benefits from it.

IV. VECTORIZED PROCESSING

The efficiency of a processor can be measured in many
ways. The predominant one is the instructions-per-cycle (IPC)
metric. Modern superscalar processors utilize deep instruction
pipelines in order to maximize the throughput of instructions.
In case of no conditional jumps it’s relatively easy to fill the
pipeline. When there are conditional jumps, it gets hairier.
The processor basically has to guess, which branch to fill the
pipeline with.

From the programming standpoint, a typical, Volcano-
style [1] row-store is based on iterators. Each query operator
offers an iterator programming interface, i.e. function or
method such as next(), that enables the query operator to
ask for the next tuple to be processed. These calls work in
a cascading fashion so that for each call, the next operators
might have to also call other iterators. Basically, from the scan
operator up, the conditional jumps taken in query operator
code are data-dependent [13]. For example, when a select
operator goes through the tuples it gets from the previous

operator, it uses a predicate to see if it should return the tuple.
The branch-prediction performance, then, for each call to the
select-operator depends wholly on the data. This results in
poor branch-prediction performance [2].

Data-dependent branching also causes poor cache-locality.
The CPU is unable to fill its caches with the right pages
because it can’t predict what the data needed might be [2].
Each cache miss then causes a lengthy fetch from the RAM.

Main benefit from vectorized processing comes from being
able to work with concepts modern compilers produce efficient
code for. Doing operations that can easily be parallelized
(for example, summing the values in an array), is an easy
target for optimization for a native code compiler. Examples of
these kind of optimizations are SIMD instructions and parallel
execution in general. This results in both higher IPC and better
cache-locality [2] than what can be observed in a typical row-
store.

Typically a Volcano-type query execution system operates
on single tuples and is not able to pipeline arithmetical
operations such as sum operations. For example, given a query
such as

SELECT SUM(price) FROM sales,
when properly vectorized, can be written like in figure 6,

sum← 0
a← sales.price
for i← a do

sum← sum+ i
end for
return sum

Fig. 6. Vectorized sum

but typically is represented more by the pseudocode in
figure 7.

sum← 0
iter ← sales.columnIterator
while iter.hasNext() do

sum← sum+ iter.column[price]
end while
return sum

Fig. 7. Iterator sum

The purpose of vectorized processing is avoiding the over-
head of the query execution architecture. Every call of the
iterator.next() is complicated and destroys the CPU’s ability
to manage its memory [14]. The iterator call may even end up
going all the way to the hard disk, which results in system
calls and more context switches to the system. Compiler
must be able to utilize CPU cache and do loop inlining.
Special instructions have been developed to further speed
up operations on raw values such as arrays of numbers and
vectorized processing enables them [2].

V. COMPRESSION IN COLUMN STORES

A naive implementation of compression works with
database pages, uncompressing them as needed, when they are



read from the disk. This simple scheme only needs changes
to the storage layer [11]. At the other end of the spectrum is
executing queries without decompressing part of the data [1]
at all.

There has been much research on compression that has
focused on compressing data more efficiently to a smaller
size [5]. Using heavier compression schemes such as Lempel-
Ziv encoding (LZ) [15] has only become practical now when
the performance development of CPUs has outperformed the
development of disk I/O [5].

The traditional ways to compress data in databases have
been

• null suppression [16],
• dictionary encoding and
• run-length encoding [11].
Null-suppression works by omitting to store null- or empty

values. Run-length encoding is a way to encode repetitive
values by specifying the length of the run of the value in
a sequence of values. Dictionary encoding is a common
compression scheme used in row-stores. Dictionary encoding
works by having a dictionary for common data values that
maps short codes for the longer values [5].

The advantages of column-stores can gain from compression
come from operating directly on compressed data and from
compression-scheme specific optimizations in the scan oper-
ator [9]. For example, producing a bit vector for an invisible
join from a column with run-length encoding the scan operator
can skip parts of the column altogether.

The changes needed for join operators relate to late tuple
materialization. For example, in the C-Store system [12], the
join operators can either work on materialized tuples or they
can alternatively defer materialization to a later time and only
return tuples of indices of the column values that describe the
join result [11].

For heavy-weight compression schemes, doing normal joins
is too expensive. A specific kind of join operator, however, can
be devised to circumvent this. LZ-join uses a windowed cache
of uncompressed items. This complicates the join operator,
but makes it feasible and faster on columns that cannot be
efficiently compressed with a simpler compression scheme
such as run-length encoding [17].

VI. CONCLUSION

Column-oriented databases provide multiple different ways
of speeding up analytical processing. While the name refers to
the underlying storage format, the optimizations that actually
make columnar databases fast are not central to only columnar
databases, but can speed up row-oriented databases aswell.
Using vectorized processing to achieve better CPU utiliza-
tion [2] and integrating compression into the query execution
pipeline [11] column stores can execute analytical queries far
quicker than row-stores. The biggest single benefit of column-
stores is that the architectural foundations are fundamentally
compatible with sequential operation that is the cornerstone of
vectorized processor and what a single CPU is good at.

The research on query optimization has not been looking
into the issues MonetDB [2] and C-Store [12] have brought
up, but has instead been interested in coming up with more
and more elaborate heuristic schemes for determining the
optimal order to do Volcano-style [18], tuple-at-a-time query
processing. Parting from operating tuple at a time, enabling
native code compilers do a good job producing efficient loop-
aware machine code and delaying tuple materilization can
significantly speed up analytical query processing.
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